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Abstract 
This  paper tells the  story of spatial  operators in robot 
dynamics,  emphasizing  their physical interpretation, 
while avoiding  lengthy  mathematical derivations. The 
spatial  operators  are  rooted in the function space  ap- 
proach to estimation  theory  developed in the decades 
that followed the  introduction of the  Kalman filter. In 
the mid 1980’s, the  authors, who  were familiar with 
the function space  approach, recognized the analogy 
between  Kalman filtering and  robot  dynamics,  and be- 
gan to use this  approach  on  a wide range of multi-body 
systems of increasing complexity. This  paper reviews 
the  spatial  operator  approach  to  robot dynamics,  and 
outlines current  applications to  the modeling, simu- 
lation  and control of space  robot  dynamics and large 
molecular structures. 

1 Foundations 
The pivotal developments in the function space  ap- 
proach to estimation  theory  are  summarized below. 

Kailat h( ’ 74) 1 Factor  Covariances 
Balakrishnan (’76) I Function  Space 

Kalman  introduced  the  notion of a  state space, and 
a recursive filter [l] that computes  the best estimate of 
the  state from possibly noisy past measurements. The 
optimal  Bryson [2] smoother  computes the best state 
estimate using both  past  and  future  data. Although 
several authors seemed to have arrived at similar re- 
sults at  approximately  the  same  time,  Kailath [3,4] 
was most likely the first to recognize many new tech- 
niques. He introduced  the “innovations” approach, 
which  when specialized to  state space  systems was a 
more  advanced way to derive optimal linear estima- 
tors such as the  Kalman filter. He also recognized 
the value to estimation  theory of powerful mathemat- 
ical techniques  (Gohberg and  Krein) to factor positive 
operators  into a product of two closely related inte- 
gral  operators with triangular kernels. The function 
space  approach  reached  maturity in the work of Bal- 
akrishnan [5],  who introduced  the elegant methods of 
Hilbert space. At the end of this  period, we knew 
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B 
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Table 1: Key spatial  operators 

how to easily solve very  complicated linear filtering 
problems  using linear integral  operators,  operator fac- 
torization  methods,  and  triangular  (Volterra)  factors. 
In  the mid 1980’s’ the  authors recognized [6-81 that 
the  equations of mechanical  systems had  an almost 
perfect analogy to those of state  space linear systems. 
Discovery of this analogy allowed the use in mechan- 
ics of very advanced  methods and  computational  ar- 
chitectures  (Kalman,  Bryson,  Riccati,  etc.) that  had 
emerged  from  estimation theory. 

2 Key  Spatial  Operators 
Table 1 summarizes the most  fundamental  spatial op- 
erators [9]. The  operator $ ( k ,  k - 1) converts a spatial 
force at joint k - 1 of a given  link k ,  into a correspond- 
ing spatial force at the next kth joint.  Its  transpose 
$* ( k ,  IC - 1) transforms  spatial velocities and accelera- 
tions in the opposite  direction.  Both  transformations 
are rigid, as  the  joint k - 1 involved in the  transforma- 
tion is kept locked. Note that these  are  the only  oper- 
ators in the  table  that involve a  SINGLE rigid body. 
The  rest of the  operators in the  table  are GLOBAL, 
in the sense that  they involve the  entire  multibody 
system. 



2.1 Rigid  Force  Shift  Operator 
The  operator &@ is a shift operator whose elements are 
all zero, except  along its lower subdiagonal as shown 
below, without loss of generality, for the special case 
of a system  with 3 bodies 

0 
E@ = ( 4(2,1) : :) (2.1) 

0 4(3,  2) 0 

This  operator  shifts forces in a direction from the 
tip of the  system  toward  its base. The  transpose &$ 
shifts velocities and accelerations in the  opposite di- 
rection from the  base  to  the  tip. 

2.2 Rigid  Recursion  Operator 
The rigid recursion operator 4 is  defined as 

4 = ( I  - &@)-I = 4(2,1) I ( 4(:,1) 44372) I 
O : ) (2.2) 

and  can  be  used to compute  spatial recursions in the 
generally inward  direction,  toward  the  base of the sys- 
tem,  starting from its  tip.  The recursions are rigid in 
the sense that  the  joints  are kept locked. 

2.3 From State to Joint  Space 
The  operator H projects  the 6-dimensional spatial 
forces at the  joint  into generalized force components 
along the  joint axes. 

H(1) 0 
H =  ( 0 H(2) 0 

O )  
(2.3) 
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Its  transpose H* converts or  “expands” the scalar ro- 
tational  rates along the  joint axes into 6-dimensional 
relative  spatial velocities across the  joints. 

2.4 Articulated Body Inertia 
To our  knowledge, the  articulated  body  inertia P was 
labeled as such for the first time in the work of [lo]. 
From the  independent view of estimation  theory,  the 
articulated  inertia is the solution to  the Riccati equa- 
tion 

P = ?;&@P&@ + M (2.4) 

where M is a composite  block-diagonal matrix whose 
diagonal blocks are  the  spatial  inertias of the various 
rigid links forming the  system.  This  spatial  operator 
Riccati  equation is equivalent to a spatial recursion 
that goes  in an inward direction from the  tip  to  the 
base of the  system,  and which sequentially generates 
the diagonal  elements of the Riccati operator.  The 
operator P = diag[P(l),  P(2),  P(3)] is a diagonal op- 
erator defined in terms of the  articulated  body  inertias 
P ( k )  at  the 3 joints forming the 3-body  sample sys- 
tem. 

2.5 Kalman  Gain  Operator 
The  Kalman gain operator G = PH*D-l is computed 
from the  articulated  body  inertia  and  appears  as a key 
element in the recursive Kalman filtering algorithms. 
Its  primary function is to compute  the  joint  articula- 
tion  operator 7 used in the Riccati equation to remove 
the  articulable  component of the  inertia,  thereby ren- 
dering the resulting body  outboard of this  joint  as  an 
articulated  body. 

2.6 Articulated Shift  Operator 
The  operator &+ is similar to &@ except that  it pro- 
duces  “articulated”  shifts  instead of “rigid” shifts. 
The  related  operator + is a lower-triangular matrix 
representing an inward spatial  Kalman filtering recur- 
sion, i. e., 

0 
+ = ( I  - &*)-I = +(2,1) I ( +,:,11 +(3,2) I 

) (2.5) 

This global recursion operator + propagates forces in 
a generally inward direction. In crossing the kth joint, 
the  articulation  operator T ( k )  is applied,  and  this is 
the reason for using the  term  “articulated” to describe 
this recursion. Its  transpose +* is an  upper-triangular 
matrix used to propagate velocities in an  outward di- 
rection across articulated bodies. The  articulated re- 
cursion + takes into  account  articulation at  the  joints, 
whereas the rigid recursion 4 does not. 

2.7 Force  and Velocity Pick-off 
The pick-off operator B converts spatial forces  defined 
at any given point C into a global force defined  over 
the  entire system. For example, if the force f ( C )  is 
defined at the  tip C of the  system,  the global force 
f = [f(l), f(2),  f(3)]* that “stacks” the forces f ( k )  at 
the 3 joints  can  be  computed  as f = + B f ( C )  where 4 
is the rigid recursion operator defined in Eq. (2.2) and 
B = [$* ( l ,C ,  O,O]*. The  transpose  operation B* = 
[4*(1, C ) ,  0, 01 maps the stacked velocity vector V = 
[V(l) ,V(2),V(3)]* into  the  spatial velocity V(C) at 
the point C. 

3 Trees: All Goes Through 
While the definition of the  fundamental  spatial oper- 
ators  has been  described in terms generally applica- 
ble to serial chain  systems  with a base and a tip,  the 
notation  remains  the  same for tree configurations in 
which each individual body  can  be  either flexible or 
rigid [ll]. This is one of the  central  advantages of us- 
ing spatial  operators:  they allow the  analyst to view 
high-level mathematical  patterns defined  by the var- 
ious spatial  operators  and  their  relationships to each 
other.  These high-level relationships are unchanged in 
going from serial chain  systems to  tree configuration 
formed  either by rigid or flexible links. 



3.1  Gather  and Scatter Operations 
To do tree-configurations, the  construction of the q5 
operator  must  be modified slightly. For example, con- 
sider joint 3 in a system of four bodies, and  assume 
that  both  the previous  joints 1 and 2 are connected 
to body 3. In  this  situation,  there is a “gathering” 
operation that computes  the  spatial force f(3) at the 
given joint 3 as  the  appropriate combination of forces 
f(1) and  f(2)  at  the previous  joints 1 and 2. This is 
achieved by 

f (3)  = 4(3, l ) f ( l )  + 4(3, 2 ) f W  (3.6) 

In  the  opposite  direction,  as needed to compute veloc- 
ities,  the velocities V( l )  and  V(2) at  joint 1 and  2  are 
computed by 

V( l )  = 4*(3,1)V(3);  V(2) = 4*(3,2)V(3) (3.7) 

which can be viewed as a “scatter”  operation  from 
joint 3 into  the two  joints 1 and 2. The  gather/scatter 
operations  can easily be  embedded  into the  operator 
4 for rigid recursions and  into  the  operator I / J  for ar- 
ticulated recursions. 

3.2 Flexible Links 
The high-level spatial  operator  notation (q5 and q5* for 
example) is unaltered in going from rigid links to flex- 
ible links. What changes is the way in which these 
operators  are synthesized. To assemble an  operator 
for a flexible link requires internal  coordinates,  either 
modal or physical, for the link flexibility. The com- 
bined effect of the  internal link coordinates is then 
computed at  one of the  joints  attached to  the body by 
means of a “gather”  or a “scatter”  operation. 

4 Analysis  using Spatial  Operators 
Spatial  operators achieve a very  high  level of abstrac- 
tion.  This allows one to see clearly, as  there is no 
more mathematical  clutter.  There  are no  subscripts, 
superscripts,  summations  and  their indices, and nu- 
merical labels for each of the individual bodies in the 
system.  The  analyst simply sees a spatial  operator 
represented by a single symbol, q5 or I / J  for example, 
which has  embedded in it more detailed information 
that is invisible to  the user. Mathematical analysis 
can  be  done  using the  spatial  operators only.  Because 
of the  sparsity of symbols,  these operator manipula- 
tions  and expressions are easier to  understand. Simul- 
taneously, each operator  equation  has  an  immediately 
obvious  spatially recursive interpretation  that can  be 
obtained  either by simple visual inspection or  by us- 
ing a computer  program to do  this conversion. There 
are  many problems that have  been  addressed in this 
manner  using  operator  notation,  as outlined in the fol- 
lowing subsections. 

4.1 Recursive  Jacobian  and Its Inverse 
We start with  perhaps  the  most  fundamental of oper- 
ations  characteristic of the  entire  multibody  system, 
that of the  Jacobian  operator 

J = B*q5*H* (4.8) 

that  maps  the  joint velocities e that live in what we 
refer to  as  the “joint space” of the  system to  the  tip 
velocity. The H* operator converts joint space into 
state space. It converts the scalar rotational  rate at 
each joint  into a corresponding  6-dimensional spatial 
velocity at the same joint.  The  transpose 4* of the 
rigid recursion operator 4 produces sequentially the 
CUMULATIVE spatial velocity at each  joint  due to 
rotation at all prior joints in the recursion operator. 
Finally, the velocity  pick-off operator B* picks off the 
last spatial velocity computed by q5* and moves it over 
to  the  tip point C. 

Using this  type of method to compute  the effect of 
the  Jacobian recursively is of course equivalent to well- 
known methods in differential kinematics. However, 
the  spatial  operator  notation in Eq. (4.8) involves 
significantly fewer symbols. 

Similarly, consider the problem of finding the  joint 
rates 6, that result in no  internal  motion  when  a re- 
dundant  manipulator  (with  more  than  6  degrees of 
freedom) is required to achieve a prescribed tip veloc- 
ity  V(C). The  joint  rates e o  have  minimal norm,  and 
a key quantity is the generalized Jacobian inverse 

J - !  - - J* ( J J * ) - ~  = H+B(B*QB)-~  (4.9) 

where Q = q5* H* Hq5 is a positive definite spatial op- 
erator  generated by the  base-to-tip recursion 

Q = &ZQ&4 + H * H  (4.10) 

followed  by the  tip velocity “pick-off’ operation 
B*[.]B. This  results in the  matrix B * Q B  that needs 
to be  inverted.  Once  this inversion is done, a tip-to- 
base rigid recursion is used  characterized by the  spatial 
operator Hq5B in Eq. (4.9). 

4.2 Mass  Matrix  Recursive  Factorization 
The mass matrix  has [7] the following Newton-Euler 
spatial  operator  factorization 

M = H$Mq5*H* (4.11) 

where M = d i a g [ M ( l ) ,  M(2), M(3) j  is a block diago- 
nal matrix formed by the individual link spatial masses 
M(lc). This  factorization implies, and is implied by, 
the  traditional recursive Newton-Euler  algorithm for 
robot  arm inverse dynamics.  Furthermore,  the diago- 
nal elements of the mass matrix  can  be  computed by 
the  tip-to-base rigid recursion 

T = &@T&$ + M (4.12) 



followed  by the “sandwich”  operation H[.]H*.  A sim- 
ilar  and closely related rigid recursion can  be used to 
compute  the off-diagonal elements of the composite 
mass matrix. 

4.3 Mass Matrix Innovations  Factoriza- 
t ion 

The mass matrix  has [7] the  alternative  factorization 

M = ( I  + H $ K ) D ( I  + H 4 K ) *  (4.13) 

where the  outer  factors  are  mutual  transposes of each 
other.  The  factor ( I  + H $ K )  is a  square, invertible 
matrix whose inverse is 

( I  + H $ K ) - l =  I - H $ K  (4.14) 

involving the  articulated  Kalman filtering recursion $ 
and  the shifted Kalman  gain  operator K .  This implies 
that  the inverse of the mass matrix is 

M-’ = ( I  - H$K)*D- l ( I  - H $ K )  (4.15) 

The  identity implies, and is implied by, a tip-to-base 
Kalman filtering operation followed  by a base-to-tip 
Bryson  smoothing  operation.  The  spatially recursive 
algorithm that results  has  been shown to be equiv- 
alent to  the  articulated  inertia forward  dynamics al- 
gorithm  advanced by Featherstone [lo]. The  identity 
also results in an explicitly symbolic expression for the 
inverse of the mass matrix. 

4.4 Diagonalized  Lagrangian  Dynamics 
When applied to  the kinetic energy, the innovations 
factorization  results in fully diagonalized  Lagrangian 
equations of motion, i. e., 

1 .  1 
2  2 

K.E. = - P M 8  = --Y*DY (4.16) 

where v = ( I  + H4K)*O is the “innovations” pro- 
cess corresponding to Lagrangian quasi-coordinates. 
It is easy to go back and  forth between the quasi- 
coordinates v and  the physical coordinates 8 because 
they  are  related by spatial  operators  that  are  mutual 
inverses of each other  as in Eq. (4.14). The diag- 
onalized equations that result  from  the diagonalized 
kinetic energy are 

where the generalized applied forces e = ( I  - H $ K ) T  
are  obtained from the physical applied moments T by 
means of the  articulated  Kalman filtering operation 
( I  - H $ K ) .  The Coriolis term  can be  computed ex- 
plicitly in terms of spatial  operators  and  spatial recur- 
sions already defined. 

4.5 Operator Sensitivities 
Operator sensitivities are defined [12] as  partial deriva- 
tives of the  spatial  operators with respect to infinites- 
imally small variations at any given joint angle. Such 
sensitivities are useful in many situations,  but in par- 
ticular in evaluation explicitly the Coriolis term C ( Y ,  e) 
in the diagonalized Lagrangian  equations of the pre- 
vious subsection. We have  computed  operator sensi- 
tivities [12] for all of the  spatial  operators defined to 
date,  as summarized in Table 1. The  operator sensi- 
tivities have the critically important  feature  that  they 
can all be  computed in terms of the  spatial  operators 
themselves. This  means that no new operators need 
to be  introduced,  as  there is  only a need to combine in 
a prescribed ways the existing set of spatial  operators. 

4.6 Closed-Chain Systems 
Closed-chain  systems  need the new spatial  operator 

R = B*$*H*D-~H$B (4.18) 

which can  be  generated [13] by the  base-to-tip  articu- 
lated recursion 

A = &;A&$ + H*D-lH (4.19) 

followed  by the “sandwich” operator B*[’]B. The ma- 
trix R that results is the inverse of the  operational 
space inertia first labeled as such by Khatib [14], as 
discussed by Kreutz in [13]. This  matrix is embedded 
in the following expression 

a = ( I  - H $ K ) * D - + [ I   - 3 ] D - + ( I  - H $ K ) T  
(4.20) 

that solves  for the  joint acceleratiogs a,  given a set of 
applied moments T .  The  operator b is  defined as 

h 

b = H $ B ( R ) - i  (4.21) 

b is a “unit”  operator, in that p s  = I .  Eq. (4.20) 
differs  from the  related  equation (4.15) for the inverse 
of the serial system-mass matrix by the  insertion of 
the  operator ( I  - bb*). This is a projection  operator 
in the sense that  its  square is the  operator itself. A 
forward  dynamics  algorithm for  closed chains can  be 
summarized as 

h 

0 Computed biased innovations process by the  tip- 
to-base filtering operator ( I  - H $ K ) .  

0 Remove this bias by the  projection  operator I - 
bb* which can  be  mechanized by an  base-to-tip 
articulated  smoothing recursion followed  by a tip- 
to-base articulated filtering operation. 

M 

0 Compute resulting accelerations a by means of an 
articulated filtering operation. 

A 



This  illustrates a property of the use of spatial op- 
eratorsto solve increasingly  more complex problems, 
there may  be a need to introduce  more advanced spa- 
tial  operators. However, the number of new operators 
needed is small, and  they formed  from the previously 
defined basic  operators. New problems  can be solved 
by  combining in well-defined ways the existing  spatial 
operators. 

4.7 Under-actuated Systems 
Under-actuated  systems [15] are those that have  fewer 
actuators  than degrees of freedom.  They are impor- 
tant  to applications  in free-flying space  robots,  hyper- 
redundant  manipulators,  and  articulated  systems  with 
structural flexibility. The  structure of the dynamics 
problems for such  systems is a hybrid of forward and 
inverse dynamics.  Spatial  operators  can easily estab- 
lish this  result,  and  also develop the corresponding 
recursive  algorithms [15]. 

The hybrid  mixture of forward and inverse dynam- 
ics problems can  be summarized by the following  equa- 
tion: 

( 2 ) = ( sa: sap ) ( ) (4.22) 
- S a p  S P P  

where for simplicity the Coriolis terms typically en- 
countered in dynamics  equations have not been  shown. 
The  active  joint moments,  applied at the  actuated 
joints,  are  denoted by T,. The passive joint  moments, 
occurring  due to friction and  other effects at the non- 
actuated  joints,  are denoted by Tp. The dynamics 
problem  consists of finding the active  joint  moments 
T, required to achieve desired active  joint accelera- 
tions ba. In  addition,  the resulting  accelerations bp at 
the passive joints  must  also  be  computed.  The  matri- 
ces Spp,  Sap, and Sa, in Eq. (4.22). are all expressible 
in  terms of spatial  operators [15]. For example, 

Spp = ( I  - Hp$Kp)*D,’(1 - Hp$Kp) (4.23) 

which is the “innovations”  factorization of the inverse 
of the  strictly “passive” manipulator  mass  matrix, 
where only the passive joints  are  taken  into account. 
The  other  matrices Sa, and Sap in Eq. (4.22) have 
similar  expressions. The  spatial  operator analysis of 
the dynamics  problem in Eq. (4.22) results in the fol- 
lowing spatially  recursive  algorithm. A spatial recur- 
sion starts from the  tip  and proceeds  toward the base. 
At each joint, a check determines if the joint is pas- 
sive or  active. If the joint is active,  its acceleration is 
known and is used to update a residual force. On the 
other  hand, if the joint is passive, its generalized force 
is known and is used to  update  the residual force. This 
recursion  continues  until the base is reached. Now be- 
gins a recursion  in the opposite  direction. As each  new 
joint is encountered,  its  joint  acceleration is computed 

if it is a passive joint,  or else, its unknown generalized 
force is computed if it is an active  joint. This continues 
until the  tip is  reached and all of the joints have been 
processed. This  algorithm is a  hybrid of known recur- 
sive inverse and forward  dynamics  algorithms [15]. 

4.8 Base Invariant,  Free-Flying Systems 
Space  robots have a unique  characteristic:  they  are 
free to  rotate  and  translate with  respect to inertial co- 
ordinates,  without  being  constrained to be immobile 
at their  base. For these  systems, the arbitrariness  in 
the choice of the basebody defines a symmetry which 
has been  used to develop  decoupled forward  dynamics 
algorithms [16,17]. The  algorithms we have investi- 
gated [16,17] process the various dynamical  quantities 
one at a  time, in two  independent  sequences.  One of 
the two sequences starts  at one end,  and  the  other 
starts at the opposite end.  The two  independent se- 
quences go in  opposite  directions.  Each of the se- 
quences represents a spatially  recursive  algorithm. For 
the case of the inverse dynamics  problem, the recur- 
sions are rigid recursions implemented by the  spatial 
operator 4.  To solve forward  dynamics  problems, the 
articulated recursions in the  operator + are used. The 
left-to-right  algorithm uses  only “past”  information, 
in the sense that  its  output at any given body  in the 
sequence depends  only  on  dynamical  quantities,  such 
as link masses,  associated  with  bodies to  the left of the 
given body that have already  been  processed. Simi- 
larly, the right-to-left algorithm uses only  “future”  in- 
formation  associated  with bodies to  the right of the 
given  body. Together,  these two algorithms use pre- 
cisely all of the available information. The  algorithms 
are  independent  in the sense that their  outputs  are 
uncorrelated to each other. Due to this independence, 
the  outputs of the two  algorithms  can  be  combined 
in an  optimal sense, using the by  now classical re- 
sult [18,19] of the optimal  combination of two  uncor- 
related state estimates. 

5 Applications 
While the spatial  operator  methods  can  potentially  be 
applied  many  types of multibody  systems, the  authors 
have  focused on  applications to spacecraft  dynamics 
simulation, to robotics,  and  to large molecular struc- 
tures. 

5.1 Spacecraft Dynamics Simulation 
Real-time  computer  simulators to predict  accurately 
the dynamical  motion of an  actual  spacecraft  in flight 
lead to significant reductions  in  cost during  system 
design, development and  testing.  They also  improve 
system  performance and reliability  during flight op- 
erations.  In the early  stages of a flight project, de- 
sign options and  trades  can easily be  made by  com- 
puter simulation.  In the final stages of design and 
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testing, when the spacecraft may  already  be built and 
almost  ready to be flown, computer simulations are 
used  for hardware-in-the-loop  testing  and evaluation. 
Such  hardware-in-the-loop simulations are hybrid sys- 
tems consisting of both flight hardware (sensors, ac- 
tuators,  etc.)  together with software for spacecraft 
dynamics.  During  the  operational phase, missions  use 
simulations to design  and verify spacecraft command 
sequences prior to in-flight execution. 

DARTS (Dynamics  Algorithms for Real  Time Simu- 
lation) is a software  package  developed by the  authors 
that provides a high-performance,  rapid-prototyping 
tool for end-to-end  system design, development  and 
testing. DARTS has  been  adopted as a standard 
by a number of space missions including, the Mars 
Pathfinder  mission that landed  on  Mars in 1997, the 
Galileo spacecraft now in orbit  about  Jupiter,  the 
Cassini voyage to  Saturn launched in late 1998, the 
mission Stardust  to collect samples  from a comet and 
return to  Earth,  and advanced  studies for a Neptune 
orbiting  spacecraft.  In  July 1997, DARTS received the 
NASA Software of the Year Award for its  contribu- 
tions to NASA missions [20]. 

5.2 Robotics 
The  authors have  use spatial  operators  to address a 
number of robotics research problems: efficient in- 
version of the  manipulator  mass  matrix [6], non- 
interacting  manipulator control [12], control of under- 
actuated  manipulators [15], free-flying robotic  systems 
[17], and  dual  arm  manipulation [21]. 

5.3 Large  Molecular  Structures 
The DARTS simulation  package  has  been  adapted 
[22,23] to develop the NEIMO package  for large-scale 
molecular  dynamics simulations using  internal coordi- 
nates in a joint research effort with Caltech. The sim- 
ulations  study  the  structural  and functional relation- 
ships of proteins  and enzymes;  protein folding mech- 
anisms  and  pathways; new drug design; and design 
and  study of catalysts  and polymers. The fundamen- 
tal technical problem  being  addressed is the global and 
local dynamical  behavior a complex collection of many 
atoms joined together by interactive forces. The effi- 
ciency of the dynamics  algorithms  embedded in the 
spatial  operators  enable  the  accurately detailed study 
of much  larger  systems  than  could  be  studied  other- 
wise. 

6 Concluding Remarks 
This overview aimed at  presenting the  spatial  operator 
approach to robot dynamics  with a minimal  amount 
of mathematical  detail.  This is made possible by the 
very  high-level of mathematical  abstraction allowed  by 
spatial  operators. While the  mathematical description 
is very abstract, each spatial  operator has a physical 
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interpretation  and a corresponding  spatially recursive 
algorithm.  The more  detailed recursive algorithms  are 
explained in more  detail in the references. 
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